

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

Alpha Beta Pruning

Motivations

- Breadth-first, depth-first, hill-climbing, best-first, and A* assume a non-hostile search space.
- The goals just sit there somewhere in the graph.
- The goals do not try to elude you.
- The 8-puzzle game did not try to stop you from reaching the goal.
- Your tic-tac-toe opponents reacted to your moves randomly.
- But in a real 2-person game, you opponent does try to beat you and make it difficult for you to reach your goal.
- Minimax search can be applied in an adversarial search space.
- Alpha-beta pruning can be used to cut bad branches (moves) in the game tree to improve minimax search time.

Objectives

- 1. Adversarial search space: MAX vs. MIN
- 2. A simple game tree: Nim-7
- 3. Minimax on Nim-7
- 4. Minimax on tic-tac-toe looking 3 plies ahead
- 5. Alpha-beta pruning

Two people games

- Solved games
 - Tic-tac-toe
 - Four In A Line
 - Checkers
- Impressive games played by robots
 - Othello bot is much stronger than any human player
 - Computer chess beat the human world champions
 - TD-Gammon ranked among top 3 players in the backgammon world
- Future bot challenges to humans
 - Poker bots play respectfully at world-class level
 - Computer bridge programs play competitively at national level
 - Go bots are getting more serious in the amateur ranking

Complete game tree for Nim-7

- 7 coins are placed on a table between the two opponents
- A move consists of dividing a pile of coins into two nonempty piles of different sizes
- For example, 6 coins can be divided into piles of 5 and 1 or 4 and 2, but not 3 and 3
- The first player who can no longer make a move loses the game

MIN vs. MAX in a Nim game

Node score = 0 means MIN wins.

1 means MAX wins.

Bold edges indicate forced win for MAX, Player2.

Minimax to fixed ply depth

- Instead of Nim-7, image the chess game tree.
- Chess game tree is too deep.
 - cannot expand the current node to terminating (leaf) nodes for checkmate.
- Use fixed ply depth look-ahead.
 - Search from current position to all possible positions that are, e.g., 3-plies ahead.
- Use heuristic to evaluate all these future positions.
 - P=1, N=B=3, R=5, Q=9
 - Assign certain weight to certain features of the position (dominance of the center, mobility of the queen, etc.)
 - summarize these factors into a single number.
- Then propagating the scores back to the current node.

MAX calculates the current node score

Look 3 plies ahead.

Use heuristic h(n) for each of these future positions.

A stronger heuristic will beat a weaker heuristic. A farther look-ahead will beat a near-sighted look-ahead. Computer chess routinely uses complex heuristics analyzing material and positional advantages and looks 40 plies ahead.

Heuristic measuring for adversarial tic-tac-toe

X has 4 possible win paths; O has 6 possible wins

$$E(n) = 4 - 6 = -2$$

X has 5 possible win paths; O has 4 possible wins

$$E(n) = 5 - 4 = 1$$

Maximize E(n)

Heuristic is E(n) = M(n) - O(n)where M(n) is the total of My possible winning lines O(n) is total of Opponent's possible winning lines E(n) is the total Evaluation for state n

E(n) = 0 when my opponent and I have equal number of possibilities.

Tic-tac-toe, MAX vs MIN, 2-ply look-ahead

MAX makes his first move

MAX's 2nd move: look ahead analysis

MAX's 3rd move: look ahead analysis

Alpha-beta pruning example

Depth-first search Visit C, A, F,

Visit G, heuristics evaluates to 2 Visit H, heuristics evaluates to 3

Back up $\{2,3\}$ to F. max(F)=3

Back up to A. $\beta(A)=3$. Temporary min(A) is 3. 3 is the ceiling for node A's score.

Visit B according to depth-first order.

Visit I. Evaluates to 5.

Max(B)>=5. α (B)=5.

A has $\beta = 3$ (A will be no larger than 3)

B is β pruned, since 5 > 3

C has $\alpha = 3$ (C will be no smaller than 3)

D is α pruned, since 0 < 3

E is α pruned, since 2 < 3

C is 3

It does not matter what the value of J is, min(A)=3. β -prune J.

Alpha-beta pruning improves search efficiency of minimax without sacrificing accuracy.

Alpha-beta pruning

- Proceed in a depth-first fashion in the n-ply look-ahead search tree.
- Find the score for the top of this tree.
- During the search, creates two values alpha and beta
- α-value associated with MAX can never decrease
 - MAX's eventually score is at least as good as the current α-value
- β-value associated with of MIN can never increase
 - MIN's eventually score is at least as good as the current β-value
- α-prune: β-value <= α-value of a MAX ancestor
- β -prune: Any MAX node having α -value <= β -value of any MIN ancestor

Conclusion

- Minimax search is designed for the adversarial search space, MAX vs MIN.
- Before MAX makes a move, he looks n plies ahead in a DFS manner.
- Apply heuristic function for the states at the end of the look ahead level.
- Propagate these values back up to the current state.
 - Use alpha-beta pruning to cut bad branches (moves) in the game tree to improve search time.
- Choose the move that maximizes the current node score.
- Then it is MIN's turn of doing similar look-ahead and pruning to decide his move.
- The players alternate until game over.